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tion was 2.26, or 0.54 below normal; the greatest monthly amount, 3.45,
occurred at East Bank, and the least, 1.22, at Beckley.

Early sown wheat is reported in excellent condition generally over
the State, except in the extreme southern portion, where some dam-
age has been done by the fly. Late sown wheat has been injuriously
affected by the freezing and thawing, so that it has not made much
progress. Some plowing has heen done for corn and stock is looking
fairly well.—E. C. Vose

Wisconsin.—The mean témperature was 23.5°, or 1.6° above normal;

the highest was 52°, at Brodhead on the 22d, and the lowest, 21° below
zero, at Grantsburg on the 31st. The average precipitation was 0.71, or
0.88 below normal; the greatest monthly amount, 2.11, occurred at
Casco, and the least, 0.07, at Delavan.— W, M, Wilson.

Wyoming.—The mean temperature was 28.8°, or 4.9° above normal;
the highest was 68°, at Fort Washakie on the 7th, and the lowest, 34°
below zero, at same station on the 31st. The average precipitation was
0.44, or 0.21 below normal; the greatest monthly amount, 1.18, occurred
at Fort Yellowstone, while none fell at Hyattville.— W. 8. Palmer.

SPECIAL. CONTRIBUTIONS.

THE CIRCULATORY MOVEMENTS IN THE ATMOSPHERE.

By Prof. V. BJERKNKES. ;

In the MonTELY WEATHER REVIEW for October, 1900, pp. 434—143, we i
have given the complete translation of a memoir by Prof. V. Bjerknes
in which he explains inthe most elementary manner higexcellent ideas
as to the geometrical treatment of a general dynamic principle appli-
cable to the movements of the atmosphere. Possibly some of our-
readers will appreciate the further elucidation of this subject that has |
just been published by Bjerknes in reply to criticisms by a European
student. We have, therefore, prepared the following collection of ex-
tracts from Bjerknes’ article in the Meteorologische Zeitschrift for No-
vember, 1900, pp. 481-491, omitting some matters that are not essential |
to the proper understanding of his explanations.—Eb.

The term gradient is now applied in meteorology to a series
of quantities of very various physical significations. But all|
these quantities have certain common mathematical pecu-:
liarities corresponding to the meaning of this word. The"
gradients are all directed quautities, or vector quantities,:
whose distribution in space can be described by means of a,
system of surfaces. Along each surface of this system of
surfaces a certain nondirected or scalar quantity has a con-
stant value, and corresponding to this property we designate
these surfaces by an additional word that is formed from the
name of the scalar quantity itself with the prefix iso- or
equi-'. The gradient is everywhere directed perpendicularly‘
to these surfaces, and shows the direction and the amount of
the greatest rate of change in that scalar quantity, which is(
constant in the direction of the (iso-) or (equi-) surfaces.

It is customary to give the corresponding gradient the same .
name as that of the scalar quantity. As a typical example,
we may consider the temperature. This scalar quantity is!
constant along the isothermal surfaces. The temperature
gradient or the thermal gradient is directed perpendicular to
these surfaces and shows the direction and the amount of the
greatest fall of temperature.

* * ¥*

* * * ¥

I request the readers of my previous memoir to recall that
I have used the word gradient only in the sense of the baro-
metric gradient.

For the sake of greater clearness and in order to deduce
some general properties of these vector quantities, I will|
write out the general hydrodynamic equations of motion./
If z, y, z are the coordinates of any given particle of fluid,:
U,, U, U, are the component velocities, and, consequently,

dU, dU, dU,
dt ' dt’ dt

its components g¢,, ¢,, ¢., is the exterior accelerating force
acting upon each unit of mass of the fluid:

dU, _ _Up
T a0 T T + 4.
1 AU, _ oy
(b 1 dt ay +
d U, _dp )
Tae T Oz + -

In the case of atmospheric motions, g is the acceleration
of gravity and gy the weight of a unit volume of air. On the
right-hand side of these equations there also occur those compo-
nents of the vector quantity about whose proper designation
we have spoken, viz, the barometric gradient G, whose com-
ponents are

o= —9Pr
! r

. ‘)
92 (f = 9P
( ) v e} Y
T
N dz

On the other hand, by the space gradient Gr of Moéller we
must understand a vector quantity whose components along
the axes are completely expressed by the right-hand mem-
hers of the following equations :

p
Gr. = — 9P _
v, Wy + gy,
. an )
(6) GT'J = - ;ly + gy,
Yo op )
. b + q9..
* * * * * * *

The hydrodynamic equations (1) form the starting point
of my study. I did not write them out in my previous
memoir because I wished to give the demonstration the
simplest possible elementary form; but, essentially, these
equations did form my starting point, and since the right-
hand sides of these equations are the three components of
Dr. Moller’s “space gradient Gr,” therefore I have taken com-
plete account of his vector guantity. It is no error, but
rather a very important advantage that this vector does not
appear in my result, for the vector Gr is in most cases a very
awkward quantity to hapdle, and it would bhe difficult to
make much advance by using it. In order to make this per-

are the component accelerations corresponding to these, then | fectly plain, I will repeat this portion of the proof in a
the equations of motion can be written in the following sim- purely analytical form. I first rearrange the equations (1),
ple form, where p is the pressure, ¢ the density, and g, with |in that I divide throughout by the density, ¢, and then re-
place the density by its reciprocal, viz, the specific volume, or

|
! According to the terminology introduced by Hamilton, and now gen- |

erally used in mathematical physics, a quantity is said to be scalar | k=1/q. Thus the equations becrome
when its value, at any point in space, can be expressed by a single dl, - —F op +
number; typical examples are density, pressure, temperature, relative dt " or e
humidity, potential, etc. On the other hand, a quantity is said to be a (ZVU O
veclor quantity when three numbers are necessary in order to specify  (4) W= — 7P + g,
its value at any given point in space. The vector quantities have both ‘ dt dgy
magnitude and direction, the three numbers referred to are their com- AU 9
ponents; typical examples are velocity, acceleration, force, and all dii = — k(')_} + g..
&~

quantities that we call gradients.
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On the left-hand side of the equations in this form are the
components of the acceleration, and on the right-hand side,
according to the terminology that has been used ever since
the days of Sir Isaac Newton, we have the total accelerating
force. This total accelerating force is the sum of two simpler
accelerating forces, viz, the accelerating gravity, g, also known
more simply as the acceleration of gravity, and again the
accelerating force due to the barometric gradient, whose com-
ponents along the respective axes are:

_9P _1.9p _ ;1 9p
k oz’ k oy’ k 0z

Now let ds be the line element of a curve consisting of par-
ticles of the fluid, and dx, dy, dz, be the projections of this
element on the coordinate axes. Multiply the equations (4)
respectively by dz, dy, dz, add the products and integrate
along the whole curve under the assumption that it is a closed
curve; there results the following:

(v, . dr, 0]

ar T N
(L (PP gy P g D
=~ (¥ (;ﬂdz+a—ydy+—(idk>

dy + dU,

()

+f(g_r_ dx + ¢, dy + g. (12)

The integral on the left hand, under the special assumption
that the curve is closed can be written in the form

(6) ?(Iltf(lfr(l_l'_ + []”(I!/ + lr: d:).

This transformation is given in Lord Kelvin’s original
proof of his theorem as to the conservation of circulatory
motion,? and is also, in a more or less complete form, to be
found in all text-books that teach this theory.®? Moreover,
the same transformation is given in the developments on
Pages 100 and 101 of my memoir.! The quantity following
the integral sign in equation (6) is simply the circulation,
C, of the curve, according to the terminology introduced hy
Lord Kelvin. Therefore, the left-hand side of equation (5)
(ilg’ which is the increase in the circulation of the
curve within a unit of time.

The first integral on the right-hand side of equation (5)
also has a simple meaning. The expression within the paren-
thesis, viz:

reduces to

ap
ox
can also be written

op

dr + r)_p dy + L d-
a9y

dz

rlp ds
ds

But —3—5} is nothing else than the component of the baro-
metric gradient, (4, that is tangential to the curve. If we
designate this tangential component by G, then the integral

can be written simply as
(7) f LG, ds.

Finally, the second integral on the right-hand side of equa-
tion (5) disappears identically along the closed curve, if ¢
represents the acceleration of gravity; for every force for
which this integral does not disappear will, as is well known,
maintain a perpetual motion.

2Sir William Thomson On Vortex Motion, Trans. Roy. Soc., Edin-
burgh, 1869, Vol. XXV, p. 217.

3See, for example, Poincaré’s Théorie des Tourbillons, p. 12, Paris,
1893.

+See _Met. Zeitschr., March, 1900, or MoNTHLY WEATHER REVIEW,
October, 1900, p. 435,

Therefore, finally, equation (5) reduces to the following:

dc g
(8) = j kG, ds
If we recall that k(G represents the accelerating force

arising from the barometric gradient, and, further, that by
the line-integral of a vector quantity we always understand
the line-integral of the component tangential to the curve,
then the equation (8) can be expressed in words as follows:
The increase of circulation in a unit of time of a closed curve is
equal to the line-integral of that accelerating force which arises
from the barometric gradient.

This theorem is identical with that given in my previous
memoir,’ viz, that the increase of circulation is equal to the
number of the solenoids inclosed within the curve. In fact,
the number of the solenoids, A, is simply another expression
for the above integral (No. 7).

* * * * * * *

It will be noticed that in passing from equation (1) to the
equations (4), we no longer have to do with the quantity G,
or the “space gradient” of Madller, as such, but with its
product into the specitic volume. In the integration along
the closed curve, the gravity term drops out in consequence
of the conservative nature of this force, so that only the
barometric gradient multiplied by the specific volume re-
mains under the integral sign.

Of course this does not mean that the gravitating force
has no importance in the circulation of the air, but only that,
in the method of computation here applied, this force does
not enter explicitly into the formula. Asseen from the point
of view here chosen, its action is indirect; it exerts a joint
influence on the distribution of pressure and density, and its
influence is, therefore, indirectly included in the integral.,
As will be shown by Sandstrom in a memoir soon to be pub-
lished, this influence of the gravitating force may also be
made to stand forth explicitly. But it appears that inva-
riably, in the computation of the circulation, the knowledge
of either the barometric gradient or the gravitating force,
alone, in connection with the density or the specific volume
of the air, will suffice, whereas we never need to know the
complete “space gradient, Q1.

* * * * * * *

If a vector quantity is given in space, we can always draw
curves that shall be everywhere tangent to the direction of
the vector; but, as is known to every geometer, it is only
exceptionally possible to construct curved surfaces that shall
he everywhere perpendicular to those curves, and, therefore,
also to the vector quantities themselves. If we indicate any
vector quantity by 7 and its components along the axes by
U, U, U, then a surface normal to the vector quantity, U,
can only be constructed when the three quantities U,, U, U.,
satisfy the following equation:

aU. ol ol!, olJ, ol
I S 7 LN gt Y et
(9) L’((‘)y (’)z)+(”( dz r’)at)+L(0x

We have here to do with a general principle long since
known to geometers, but which one in his haste, easily over-
looks. For itseems easy to say that we may draw a surface ele-
ment normal to each individual curve of a system of curves,
and that the totality of all these elementary surfaces mustcon-
stitute a continuous system of surfaces perpendicular to the
original curves; but the incompleteness of this statement is
readily recognized when we consider a simple example. For
instance, let the curves resemble the fibers of an ordinary
twisted thread. If we attempt to imagine the nature of the

®Met. Zeitschr., p. 106, or MoNTHLY WEATHER REVIEW, pp. 437-8.

The attention of the reader is called to the fact that in fig. 8,
Met. Zeitschr., 119, or MonTHLY WEATHER REVIEW, p. 439, the vertical
arrow on the right-hand side should point downward, not upward, as
in the figure.
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surface we see at once that it is impossible to draw any sur-
face perpendicular to curves that have such courses as these.
If we twist the fiber backward so that it is made up of par-
allel straight lines then we can draw a plane surface perpen-
dicular thereto. For different degrees of bending or defor-
mation of such a bundle of fibers, this plane will be curved
and deformed, but still without ceasing to constitute a con-
nected surface. But the instant that we twist the bundie of
fibers the plane will break into individual elementary sur-
faces that can no longer be combined into a continuous
surface.

Now, equation (9) expresses the mathematical condition
that the curves running tangential to the vector quantities
shall show no such torsion as those of the fibers of a thread.
In order to invesigate the relation of the vector quantity,
Gr, in reference to this property, we may insert in equation
(9) the values of the components as given in equation (3).
After a simple reduction there results the following:

Bp( oq (Dq) op ( dq __ dy
(10) oz g:@ Iuy, 5‘“1/ g oz (/:5;)
op( oq (zg —
+ 9z \ T 5y g“'(,'iy) 0

The discussion of this equation, according to regular geo-
metrical methods, leads to the following resuits: it will be
satisfied, and then only, when a system of curves can bhe
given along which, and simultaneously, three scalar quan-
tities are constant, viz: density, pressure, and the potential
of gravity. These curves must, necessarily, lie in the level
gurfaces of gravity, and the condition that must be satisfied
may therefore be formulated as follows: The equation (10)
will be satisfied when in every level surface of gravity a sys-
tem of curves can he drawn such that along every curve the
value both of the density and of the pressure is constant.
This condition, as may easily be seen, can be fulfilled in a
series of special cases, which are completely enumerated in
the following list:

1. When the pressure is constant throughout the whole
gpace.
p2. When the density is constant throughout the whole
gpace.
p3. When the surfaces of equal pressure coincide with the
level surfaces of gravity.

4, When the surfaces of equal density coincide with the
level surfaces of gravity.

5. When the surfaces of equal pressure and those of equal
density coincide with each other.

6. When the lines of intersection of the surfaces of equal
pressure and equal density fall in the level surfaces of
gravity.

The first case is at present of no importance. The second
cage is important, since this condition is always fulfilled
when the fluid is homogeneous and incompressible. The
distribution of the moving forces in such a fluid can, there-
fore, be expressed by a diagram of isostenes, or isostenic sur-
faces [ which term is applied by Moller to surfaces that are
perpendicular to the space gradient or the vector quantity,
Gr]. If piethe pressure and ¢ the potential of gravity, then
the equation of these isostenic surfaces is

¢ — p = constant, .

and in the solution of special problems these will often find
application in the literature of hydrodynamics. In this case
the vector, Gr, is a quantity of the nature of a gradient.
The conditions (3) and (4) can be momentarily fulfilled in
the course of any movement, but only to be not fulfilled in
the next moment. In such isolated moments, therefore,

isostenic surfaces can be drawn, but only to disappear in the
next instant. These conditions can be permanently fulfilled
only in the case of equilibrium. On the other hand, case
(5) is important because the condition that the surfaces of
equal density and equal pressure shall agree will always be
fulfilled if we assume that the density is a function of the
pressure only. In this case, also, there exist isostenic surfaces
whose equation can, in general, be written as

¢ — rd—P = constant,
v q

and these will find frequent application in the solution of
special problems. All movements of the type of sound waves
algo helong to the category of atmospheric motions that we
may study under the assumption that the density of the air
depends only on the pressure. In this category, also, belongs
the concrete example of the courses of the isostenic surfaces
that was given by Mdller.” Finally, case (6) refers to fluid
media of the most general nature, and the condition now in
question is again such an one as can ouly be fulfilled aceci-
dentally, for an instant, and in the next instant will in gen-
eral cease to be fulfilled.

Therefore, the isostenic surfaces will, in general, be useful
onlyin cases (2) and (5) that is to say,in homogeneous, incom-
pressible fluids and in fluids where the density is a function
of the pressure only. But it is precisely to these two cases
that the celebrated Helmholtz-Kelvin theorem relates, ac-
cording to which a circulatory motion can not be initiated,
and, inversely, a circulatory motion once established also can
not be annihilated. When we make these special assump-
tions, as to the property of the fluid, we thereby exclude the
possibility of discussing circulatory motions in the atmos-
phere.

* * ¥ * ¥ * *

Finally, I return to the terminology, which we meet with
in dynamic meteorology, of the directed quantities distributed
throughout all space.

In dynamic meteorology we meet first with two vector quan-
tities distributed throughout the whole space and which be-
long to the simplest category of vector quantities. These are:
(1) The force of gravity acting on a wnit of mass, generally
called the acceleration of gravity, and (2) the moving force
resulting from pressure acting on the wnit volume, or the
quantity that I have here called the barometric gradient.
These vector quantities have not only the property that one
may draw surfaces perpendicular to them, viz, the level sur-
faces of gravity, or the isobaric surfaces of pressure, but we
may also, by means of these surfaces, express the magnitude
of the vectors, since the latter are inversely proportional to
the thickness of the layer between two consecutive surfaces.
Therefore, in accordance with Lord Kelvin’s notation, these
two vector quantities belong to the category of lamellar vector
quantities. The conception of a lamellar vector is in mathe-
matical sense identical with the conception of a gradient.

Next after these two simplest vector quantities, we meet
two of & somewhat more complex nature, namely, the product
of the density of the air by the acceleration of gravity and,
again, the product of the specific volume of the air by the
barometric gradient. The first of these quantities is the
force of gravity acting on a unit of volume or the weight of
a unit volume of air, understanding by this weight a directed
quantity distributed throughout the whole space. The second
of these guantities is the force resulting from the pressure
acting upon a unit of mass. This is the vector quantity that
we encountered in developing the theorem above given, as
expressed in equation (3), and represents the accelerating
force corresponding to the gradient of pressure. These two

" Met. Zeitschr., 1895, p. 92,
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vector guantities have the further property of standing per-
pendicular to a system of surfaces, viz, the system of level
surfaces, or isobaric surfaces, respectively. But the magni-
tudes of these quantities can no longer be expressed by the
thickness of the lamella between the successive surfaces, but
for this purpose we must introduce a second system of sur-
faces, viz, the surfaces of equal density, or equal specific
volume. These two vector quantities therefore belong to
the category of complex lamellar vector quantities that
Lord Kelvin has so called on account of the two systems of
surfaces and lamell. Therefore, in the strict sense of the
word, these quantities are not of the nature of gradients.
The importance of these vector quantities depends especially
upon the fact that they are the simplest quantities upon
which we can base the computation of the circulatory mo-
tions of the atmosphere. The accelerating barometric gra-
dient is the vector quantity whose tangential component
appears under the sign of integration in equation (8), and
the tangential component of the weight of a unit volume of
air will occur under the integration sign in the corresponding
integral when we describe the circulation by the use of the
gpecific moving quantities, viz, the product of velocity and
density, instead of by velocity alone.

By the combination of a simple lamellar vector quantity
(the baromstric gradient) and a complex lamellar vector (the
weight of the air in a unit of volume) there arises that
vector quantity which Moller has called “the space gra-
dient,” Gr.

It therefore seems to me important to earnestly warn
against the use of the term gradient for this vector quantity.
Since, misled by the name gradient, we are liahle to attribute
to it the properties of a gradient, and be led into further error
with respect to the isostenic surfaces. Moreover, a special
name for this quantity is entirely unnecessary, for in mathe-
matical relations it is nothing else than a vector quantity,
and in mechanical aspects it is a force of a most general
nature. The retention of the name gradient would also be
equivalent to saying that in meteorology we call that a
gradient which in mechanics is called force, and that in
meteorology we speak of magnitudes of the nature of the
gradient, when the mathematician speaks of vector quanti-
ties. This special name can be useful only when we apply
the term gradient in a mechanical sense to forces of a very
special nature, and in a mathematical sense to vectors of a
very special nature, and then alone would the name have a
prospect of being accepted from meteorology into the mathe-
matical and mechanical sciences, and of assisting instead of
hindering the cooperation of these sciences in meteorological
questions.

The rational introduction of a terminology will, therefore,
encounter no serious difficulty where the term gradient is
used only in the above-mentioned special sense; but so far
as I know no other meteorologist has accepted and used this
special gradient. Only in one point do we come into dis-
agreement with the old usage, viz, by the term vertical
gradient we generally mean, not the vertical gradient of
pressure, but the difference between the vertical gradient of
pressure and the force of gravity. This is the vertical com-
ponent of Méller’s gradient. So long as we retain this term,
instead of speaking of the vertical force, it will be very easy
to call the general force directed at random in space, the
space gradient, and misled by this name to attribute to this
force the properties of the gradients and thereby again find
ourselves tending toward the errors with regard to isostenic
surfaces. Therefore, it would seem best not to make any
further use of the term vertical gradient in the above sense,
which is in fact not generally done, but to indicate the dif-
i“erence between the two forces by the simple term “ vertical
orce.”
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LINE INTEGRALS IN THE ATMOSPHERE.

By FRAXRE H., BieeLow.

The papers by Prof. V. Bjerknes’, in connection with a criti-
cism thereon® by Dr. M. Méller, and a practical application
of the theory to a cyclone, by Dr. J. W. Sandstrom®, have
brought before meteorologists a problem of interest and prac-
tical importance. It is, therefore, desirable to investigate
the bearings of the theory from various points of view. The
following contribution to the subject is not intended as a criti-
cism of the preceding works, but as a supplement to the dis-
cussion of the subject given by Prof. V. Bjerknes himself.*

What the theory is may readily be described in the follow-
ing manner: The well known diagram by Hertz of the adia-
batic changes in the condition of moist air, Abbe’s transla-
tions, On the Mechanics of the Earth’s Atmosphere, shows the
relations between pressure B, temperature ¢, and vapor ten-
sion ¢, in the four stages, «, 3, 7, 5. Now, since the density
p is a function of B, t, ¢, only, a similar diagram will result
for the function p, the density, and hence for the specific

volume v = ;1), by drawing other lines on the same coordinate

axes.
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Fra. 1.—Circuit in the atmosphere for line integration.

Using throughout this paper the notation laid down in my
International Cloud Observations Report, on pages 485-488,
and also the formule derived in the sections following, we
have

1_P(1+ “1) for dry air, 47a;
Iz r P
1 1B ; h+h
= (L at) (L 3) (1 ) (L —==2]).
and = © (L) (1 5) (147) (14 7

= e — ——, [Or moist air.
p, (B—.377¢) w or mois

1Das dynamische Princip. der Circulations bewegungen in der Atmos-
phiire. Meteorol Zeit. Marz 1900 und April 1900. Translation.
WeatHER REVIEW, October, 1900,

:Der riumliche Gradient, M. Miller. Meteorol Zeit. June, 1900.

8 Ueber die Verwendung von Prof. V. Bjerknes’ Theorie der Wirbel-
hewegungen in Gasen und Fliissigkeiten. Konigl. Schwed. Ak, der
Wiss. January, 1900.

+Riumlicher Gradient und Circulation. VonV.Bjerknes. Meteorol.
Zeits. November, 1900.




